
Lecture 3: Computational complexity

MSc in Physics Engineering - Quantum Computation, L. S. Barbosa, 2023-24

Summary.
(1) Computational complexity. The asymptotic notation.

(2) Case study: closure operations.

(3) Complexity classes. Examples.

(4) Going quantum: The BQP class.

1 Analysing complexity

The focus

The focus of this lecture is computational efficiency, i.e. the attempt to quantify the amount of
computational resources (e.g. time, space, length of messages to be exchanged) required to solve
a given problem. Or, putting it in different way, to answer the question of knowing how do such
resources scale with the size of the problem (for a suitable definition/measure of size).

Actually, the efficiency of an algorithm will be discussed by studying how its number of basic
operations scales as the size of the input increases.

A fundamental message is that the efficiency of an algorithm is, up to a considerable extent,
much more important than the technology used to execute it.

Example

Integer multiplication by the repeated addition algorithm (to compute x·y, just add x to itself y−1
times) or by the usual grade-school algorithm illustrates the point. For example, multiplying 577
by 423 using repeated addition requires 422 additions, whereas doing it with the grade-school
algorithm takes 3 multiplications of a number by a single digit and 3 additions. Even for 11-digit
numbers, a pocket calculator running the grade-school algorithm would beat the best current
supercomputer running repeated addition.

To study computational complexity some abstractions are in order. First of all, an algorithm can
be abstracted as a computational task accepting as input and returning as output a sequence of
bits. This is done without loss of generality because, with a linear overhead in its length, any
string from any other alphabet can be encoded as a bit string.

Moreover, one may restrict attention to decision problems, i.e. problems that have a Boolean
output, thus encoded as a single bit. For example, given two numbers are they relatively prime?.

1

A function h with a Boolean output (which is special case of a function from strings to strings)
can be identified with a set

Lh =̂ {x | h(x) = 1}

which forms a particular language. Thus, computing h is equivalent to the problem of deciding
language Lh, i.e. given a string s decide whether s ∈ Lh.

Example

Consider the following dinner party problem: Given a list of acquaintances and a list of all pairs
among them who do not get along, find the largest set of acquaintances you can invite to a dinner
party such that every two invitees get along with one another.

Let us represent the possible invitees through the vertices of a graph with an edge connecting any
two people who don’t get along. Thus, the problem becomes that of finding a maximum sized
independent set, i.e. the bigger set of vertices without any common edges, in a given graph. The
problem corresponds to the following language

L =̂ {(G,n) | ∃M⊆ vertices(G). |M| ≥ n ∧ ∀x,y∈M . (x, y) /∈ edges(G)}

whose words are pairs composed by a graph G and a number n for which there exists a conflict-
free set of invitees, of size at least n.

Observe this a particularly difficult problem: the obvious algorithm — try all possible subsets
until a subset that does not include any pair of guests who don’t get along is found is highly
inefficient (how long will it take for a group of 100 invitees?).

The study of computational complexity focus on how various kinds of computational resources
grow as a function of the input size. This analysis can be carried on in any formalization of a com-
puting device — e.g. Turing machines or circuits. Note that, while computability is independent
with respect to the particular model of computation considered (cf, the (physical) Church-Turing
thesis, which states that every physically realizable computation device can be simulated by a
Turing machine), this is probably not the case when discussing computational complexity.

The corresponding conjecture is known as the strong Church-Turing thesis which claims that ev-
ery physically realizable computation model can be simulated by a Turing machine with polyno-
mial overhead. This is a bit controversial; in particular some problems are known to be solvable
in polynomial time on a quantum computer, but not known to be so on a classical one. Moreover,
it seems that quantum computations cannot be efficiently simulated in a classical Turing machine
[3].

Measuring computational complexity

Example: transitive closure of R ⊆ A2

from ‘above’: R∗ is the smallest relations containing R that is transitive and reflexive.

from ‘below’:

2

R∗ = {(a, b) | a, b ∈ A there exists a path from a to b in R}

which suggests an algorithm:

Algorithm 1: TC1.
R∗ := ∅;
for i := 1..n do

for each i-tuple (b1, · · · , bi) ∈ Ai do
if it is a path then
R∗ := R∗ ∪ {b1, bi}

end
end

The asymptotic notation to capture the growth rate of a function

To compare how the running time h(n) of an algorithm grows with respect to a reference function
f, one may consider the limit, when n→ ∞, of the ratio

R =
h(n)

f(n)

• R is a constant in]0,∞[: h(n) = Θ(f(n))

• R <∞: h(n) = O(f(n))

• R = 0: h(n) = o((f(n))

For example, h(n) grows

• quadratically: h(n) = Θ(n2)

• at most quadratically: h(n) = O(n2)

• less than quadratically: h(n) = o(n2)

Formally, define
O(f) = {g ∈ NN | ∃c,d∈N+ . ∀n. g(n) ≤ c.f(n) + d}

Thus, stating that h ∈ O(f) means that h is no faster than f. An equivalence relation relating
rates of growth is defined by

f ∼ g iff f ∈ O(g)∧ g ∈ O(f)

Example: p(n) = 31n2 + 17n+ 3

Clearly p(n) ≤ 48n2 + 3, because n2 ≥ n. Thus p ∈ O(−2) with constants 48 and 3.
However, −2 ∈ O(p) with constants 1 and 0.

3

Theorem

For any polynomial p(n) = cknk+ · · ·+ c1n+ c0, p ∈ O(−k) with constants
∑

1≤i≤k ci and c0.

Theorem

Any two polynomials p and q with the same degree verify p ∼ q.

Theorem: the exponential barrier

The growth rate of function 2n is higher than the one of an arbitrary polynomial.

Proof.
We want to show that

ni ∈ O(2n) i.e. ni ≤ c2n + d

Let c = (2i)i and d = (i2)i, and consider two cases:

• n ≤ i2 ⇒ ni ≤ c2n + d, because ni ≤ d

• n > i2 ⇒ ni ≤ c2n + d, because we may prove that ni ≤ c2n as follows

First observe that ni ≤ (iq+ i)i = ii(q+ 1)i, for q the integer quotient of n by i (i.e. iq ≤ n ≤
i(q+ 1)). Now,

ii(q+ 1)i

≤ { n ≤ 2n}

ii(2q+1)i

≤ { definition of c}

c2qi

≤ { definition of q}

c2n

Observe now that if a polynomial had the same growth rate than 2−, then any polynomial of a
higher degree would have the same rate (because we’ve just proved that no polynomial grows as
fast as 2−). But this leads to a contradiction because, as shown above, polynomials of different
degrees have different rates of growth.

�

Clearly, 2n has a higher rate of grow than any polynomial. Other exponential functions — for
example, 27n, nn, n!, 2n2 or 22n — have even higher rates of growth. The following diagram,
reproduced from [5] illustrates the relevance of being polynomial (assuming execution time is 1
microsecond for n = 1).

4

To reinforce the idea, consider the famous Travelling Salesperson problem: Given a map with n
cities and distances among them, produce an itinerary that minimizes the total distance travelled.

Clearly, the problem can be solved (e.g. systematic examination of all itineraries). But, on
the other hand, it remains unsolvable in any practical sense by current computers: too many
itineraries — (n − 1)! — to be explored. Notice that a (n − 1)! algorithm goes faster than 2n.
For 40 cities the number of itineraries is enormous: 39!. Even if 1015 of them could be inspected
per second (a value our of reach of current supercomputers) the required time for completing the
calculation would be several billion lifetimes of the universe.

What is a practically feasible algorithm? The general answer is: it should run for a number of
steps bounded by a polynomial in the length of the input, i.e. have a polynomial rate of growth.

Thus, an algorithm whose running time can be upper-bounded by any polynomial function is
considered efficient. On the other hand, it is regarded as inefficient if it can be lower-bounded by
any exponential function. There are, of course, many growth rates that fall between polynomial
and exponential — for example n logn — but the polynomial / exponential separation seems to
be a basic frontier for all practical purposes. One may wonder why such a quantitative gap seems
so important and full of deep, foundational implications. The following quote by a well-known
expert in quantum computation, Scott Aaronson, is in order:

One might think that, once we know something is computable, whether it takes 10 seconds
or 20 seconds to compute is obviously the concern of engineers rather than philosophers.
But that conclusion would not be so obvious, if the question were one of 10 seconds versus
1010

10
seconds! And indeed, in complexity theory, the quantitative gaps we care about are

usually so vast that one has to consider them qualitative gaps as well. Think, for example,
of the difference between reading a 400-page book and reading every possible such book,
or between writing down a thousand-digit number and counting to that number.

Scott Aaronson [1].

5

2 Case study: Closure algorithms

Computing R∗

Algorithm 2: TC2.
R∗ := ∅;
for i := 1..n do

for each i-tuple (b1, · · · , bi) ∈ Ai do
if it is a path then
R∗ := R∗ ∪ {b1, bi}

end
end

The algorithm examines each sequence (b1, · · · , bi); if this is a path add to the solution. Thus,
the total number of basic operations (test and add) is

n(1+ n+ n2 + · · ·+ nn)

i.e. in each of the n iterations look for paths of length up to n. Therefore, TC1 ∈ O(nn+1).

Algorithm 3: TC3.
R∗ := R ∪ {(a, a) | a ∈ A};
while ∃ai,aj,ak∈A. (ai, aj), (aj, ak) ∈ R∗, (ai, ak) /∈ R∗ do
R∗ := R∗ ∪ {(ai, ak)}

end

• In each iteration one pair (if any) is added. Thus, the maximum number of additions
corresponds to the maximum number of pairs available, i.e. n2.

• In each iteration the algorithm searches for n3 triples.

Therefore, TC3 ∈ O(n2 × n3) = O(n5).

Exercise 1

The algorithm TC3 repeatedly searches for violations of the transitivity property. However, each triple
must be checked again and again since the introduction of a new pair may entail new violations in triples
that have already been checked. A better algorithm of O(n2 × n) = O(n3) can be obtained by imposing
an order to the triples so that a new pair added does not violate the transitivity condition established for
triples already considered. In the algorithm below, TC4, triples are ordered by the middle index (in in-
creasing order). Explain why the algorithm works and its growth rate.

6

Algorithm 4: TC4.
R∗ := R ∪ {(a, a) | a ∈ A};
for j = 1, 2, · · · , n do

for i = 1, 2, · · · , n and k = 1, 2, · · · , n do
if (ai, aj), (aj, ak) ∈ R∗ but (ai, ak) /∈ R∗ then

R∗ := R∗ ∪ {(ai, ak)}
end

end

Closure problems

A subset C ⊆ A is closed for a relation R ⊆ An+1 if

bn+1 ∈ C ⇐ b1, · · · , bn ∈ C ∧ (b1, · · · , bn, bn+1) ∈ R

e.g.

• N is closed for +

• the set of ancestors is closed for the relation parent-of

• any set is closed for ⊆

Closure property: The set C is closed under relations R1, · · · , Rm
cf, the usual construction the smallest set that contains A and has property φ. But note that not
all properties guarante the existence of a smallest set satisfying φ. However,

Theorem

If φ is a closure property defined by relations R1, · · · , Rm on a set A and B ⊆ A, then there
exists the smallest set C st B ⊆ C and C has property φ.

Proof.
Let φ be defined by a relations R1, · · · , Rm and S denote the set of subsets ofA containing B and
closed for each Ri. Clearly S 6= ∅ (why?). Then, define C =

⋂
S (which is well defined because

S is non empty). Then,

• B ⊆ C, by construction.

• C is closed under all relations R1, · · · , Rm. To see this, suppose a1, · · · , an−1 ∈ C and
(a1, · · · , an−1, an) ∈ R. All sets in S contain a1, · · · , an−1 and because all of them are
closed, all have an. Thus, an ∈ C.

• C is minimal: no strict subset C ′ of C exists (otherwise C ′ ∈ S and C ⊆ C ′).

�

7

Exercise 2

Set C in the theorem above is the closure of B under relations R1, · · · , Rm. Determine the closure of
the singleton set containing yourself under the relation parent of. Similarly, determine the closure of set
{0, 1} under addition and the closure of the set of natural numbers under subtraction. Note that R∗, for a
relation R is the closure of R under transitivity and reflexivity.

Theorem

Any closure property over a finite set can be computed in polynomial time.

Proof.

Algorithm 5: Computing a generic closure.
C◦ := C;
while ∃1≤i≤k and ri elements aj1 · · ·ajri−1

∈ C◦ and ajri
∈ D \ C◦ . (aj1 · · ·ajri) ∈ Ri do

C◦ := C◦ ∪ {ajri }

end

Thus, the algorithm is O(nr+1) where n is the cardinal of D and r is the greatest arity of all
relations considered.

�

Theorem

Any algorithm in polynomial time can be rendered as the computation of a closure over a set for
a set of relations.

3 Complexity classes

Let us classify the complexity landscape. Define

TIME(f(n))

as the class of problems for which exists an algorithm solving in time O(f(n)) instances of size
n.

The class P

P =
⋃
k>0

TIME(nk)

8

The fundamental observation is that exponents are constant with respect to n; in particular they
do not grow with n (as e.g. in nlogn). On the other hand, the class EXP = TIME(2p(n)), wehre
p(n) stands for a polynomial in n, takes care of execution times growing exponentially with n.

P is the class of all languages for which the membership problem has a classical algorithm
that runs in polynomial time and gives the correct answer with certainty. As mentioned above,
polynomial computations are regarded as tractable or computable in practice. On the other hand,
non-polynomial computations are regarded as intractable as a small variation in the input size
may require resources exceeding reasonable limits (e.g. the running time may exceed the number
of atoms in the universe).

P may also be characterised as the class of polynomially decidable languages, i.e. languages tah
can be decided by a polynomially bounded Turing machine. This is a Turing machine that always
halts after at most p(n) steps, where p(n) is a polynomial and n is the length of the input.

The class P of such languages is the quantitative analog of the class of recursive languages. As
the latter, it is closed under complement, union, intersection, concatenations and Kleene star.
But, on the other hand, not all recursive languages are polynomially decidable.

Theorem

S /∈ P, where
S = {"M" "w" |M accepts input w after at most 2|w| steps}

Proof.

If S ∈ P, language

S ′ = {"M" |M accepts input "M" after at most 2|"M"| steps}

and its complement are also in P. This means that there exists a polynomially bounded Tur-
ing machine B which accepts all descriptions of Turing machines that fail to accept their own
description in 2n steps, where n is the length of the description, and halt in p(n) steps for a
polynomial p(n).

Does B accept its own description "B"?

• If YES then B fails to accept "B" within 2|"B"| steps. However, B halts in |"B"| steps (because,
by assumption, the complement of S ′ is in P). This means that B halts much before 2|"B"|.
Thus it should reject "B", which leads to a contradiction. Note that there is always an integer
n0 such that p(n) ≤ 2n for all n ≥ n0, and we may safely assume |"B"| ≥ n0.

• If NO a similar argument also leads to contradiction.

The class BPP (from bounded error probabilistic polynomial time)

One objection raised against the definition of P is the fact that it sweeps behind the carpet the
possibility of resorting to randomness as a computational resource. If such a thing exists in the

9

Universe, one may conceive algorithms involving some sort of random choices such as initial-
izing a variable with a value chosen at random from some range. Such algorithms, classified
as randomized ou probabilisitc, are basically implementations of a random number generator1.
They can be implemented in probabilisitc Turing machines. These are Turing machines with
two, rather than one, transition relations in their finite control. At each step one may choose,
with equal probability, which of them to apply, a decision which is independent of all previous
choices made.

The BPP class plays for randomized algorithms a role similar to that of P for the determinisitc
case: it captures efficient probabilistic computation. Formally, it is the class of all languages
whose membership problem has a classical randomised algorithm that runs in polynomial time
and gives the correct answer with probability at least 2

3
for every input. The class corresponds to

the formalisation of decision problems that are feasible on a classical computer.

The choice of 2
3

above is a bit arbitrary and can be replaced by any other number 1
2
+ δ, with

0 < δ < 1
2
. This is proved as follows:

• Consider an algorithm for a decision problem that works correctly with probability 1
2
+ δ,

and repeat its execution k times.

• Take the majority vote of all k answers as the output.

• According to the so-called Chernoff bound or amplification lemma (see [6] for a proof),
this answer is correct with a probability at least 1 − e−2kδ2 approaching 1 exponentially
fast. Thus there will be value k such that this probability will exceed 1− ε for any ε > 0.

• If the original algorithm had polynomial running time τ(n), this one will have kτ(n),
which is still polynomial in n.

Clearly P ⊆ BPP, but strict inclusion remains an open questions: most probably, randomized
computation may be no more powerful than deterministic computation.

The class PSPACE (from polynomial space complexity)

Is the class of of all decision problems that can be solved within a polynomially bounded amount
of space as a function of the input size. Clearly

P ⊆ BPP ⊆ PSPACE

because any polynomial time computation occurs in polynomial space since polynomial many
1- and 2-bit gates can act on at most polynomial many bits in total. Similarly in any randomised
polynomial time computation, for each fixed choice of the random bits, we can perform the
associated computation in polynomial space. Then doing this sequentially in turn (re-using the
same polynomial space allocation) for each of the exponentially many choices of the random
bits, we can keep a running total of accept and reject answers, and thus get BPP ⊆ PSPACE.

It is not known whether any of these inclusions are strict.

1It turns out that generating random bits, i.e. tossing fair coins, is enough.

10

The class NP

As mentioned in a previous lecture, there is no algorithm other than exhaustive search to decide
if in a given graph there is an Hamiltonian path. However, if we are given a specific path it is easy
to verify whether it is indeed a solution to this problem. The complexity classNP is precisely the
class that captures the set of problems whose solutions can be efficiently verified, i.e. verified in
polynomial time with respect to the length of the input. By contrast, the class P contains decision
problems that can be efficiently solved. Clearly,

P ⊆ NP

Formally, NP is the class Q of problems such that x is a solution to Q iff there is a polynomial
decision problem D and a solution (x, t) to D where the length of t is polynomial in x.

For example, for the Hamiltonian path problem, x is a graph, t is a path and D(x, t) is the
decision problem of checking if t is a Hamiltonian path for x.

This can also be formulated in terms of a concrete computational model, for example, Turing
machines recognising languages associated to decision problems. Thus, a language L ⊆ {0, 1}

∗

is in NP if there is a polynomial p : N −→ N and a polynomial-time Turing machine M such
that, for every input x ∈ {0, 1}

∗,

v ∈ L ⇔ ∃
t∈{0,1}p(|x|) . M(x, t) = 1

Turing machineM is called a certifier for L, and string t a certificate, or a witness for input x.

Another way to think about the complexity class NP is as the class of languages that can be
decided by a polynomially bounded nondeterministic Turing machine. Note the meaning of
decision in this context. For a nondeterministic Turing machine to decide a language means that
all the computations of the machine must reject an input not in the language, whereas an input
from the language must be accepted by at least one computation. Actually, the qualifierNP does
not refer to non-polynomial, but to non-deterministic.

Actually, most interesting problems mentioned above for which no polynomial algorithm exists
— Traveling Salesperson, Satisfiability, Independent Set, Integer Partition, etc., can be solved
by polynomially bounded nondeterministic Turing machines. As in the probabilistic case, such
machines have two transition functions which are arbitrarily chosen before being applied. Given
an input, the machine decides if there is a sequence of (nondeterminisitic) choices leading to an
acceptance state.

Although determinism and nondeterminism in the definition of Turing machines do not interfere
on their expressiveness in what concerns decidability, separating determinism from nondeter-
minism at the polynomial level, remains unsolved. It is the famous P 6= NP conjecture, which
addresses the question whether or not the two classes are the same. How long does it take to
solve a NP problem deterministically? The most general approach resort to exhaustive search,
thus NP ⊆ EXP.

Finally, another way to characterise the class NP is to build on the bijection between decision
problems and logical properties: a decision problem corresponds to a property φ(x) which holds

11

if x is one of its solutions. Thus, the class of NP properties has the form

φ(x) = ∃t polynomial in the length of x . D(x, t)

with D in class P. The existential quantifier stands for the process of finding a witness t.

Example

The dinner party problem discussed above inNP. Its language contains all pairs (G,n) such that
graph G has a subgraph of at least n vertices with no edges between them. A polynomial-time
verification algorithm proceeds as follows:

• given a pair (G,n) and a string t ∈ {0, 1}
∗, output 1 iff t encodes a list of n vertices of G

such that there is no edge between any two members of the list;

• clearly, (G,n) is in the language iff there exists a t such that M(G,n, t) = 1. Therefore,
the language is in NP. The sequence t of v vertices is the certificate that (G,n) is in the
language.

Note that for G with N vertices, the certifier string t can be encoded with at most O(n logN)
bits. This is polynomial in the size of the representation of graph G.

Clearly P ⊆ NP, by making p(|v|) = 0 and thus reducing the certifier t to the empty string. The
reverse inclusion is far less obvious. As Scott Aaronson puts it [1],

If P = NP then the ability to check the solutions to puzzles efficiently would imply the
ability to find solutions efficiently. An analogy would be if anyone able to appreciate a
great symphony could also compose one themselves!

Or, formulated in another way,

If P = NP then whenever a theorem had a proof of reasonable length, we could find
that proof in a reasonable amount of time. In such a situation, we might say that “for all
practical purposes”, Hilbert’s dream of mechanizing mathematics had prevailed, despite
the undecidability results of Gödel, Church, and Turing.

NP-complete problems

The dinner party problem has an important completeness property: All problems (languages) in
NP can be reduced to it in polynomial time (just as all recursively enumerable languages reduce
to the halting problem). The intuitive meaning of a problem being reducible to another is that if
one is able to solve the later quickly, one is also able to solve the former at a similar rate.

Formally, a language L reduces to another language H if there is a polynomial-time computable
function h : {0, 1}∗ −→ {0, 1}

∗ such that

∀v∈{0,1}∗ . v ∈ L ⇔ f(v) ∈ H

Such NP problems are called NP-complete, and they are the hardest of all NP problems.

12

The number of real-life problems that are known to be NP-complete is enormous. Examples
include

• Sudoku and jigsaw puzzles;

• the Traveling Salesperson problem;

• the satisfability problem for propositional formulas (typically presented in the conjunctive
normal form); the result showing that each problem in NP can be reduced to the satisfa-
bility problem is known as Cook’s theorem.

• more generally, the problem of finding whether a mathematical statement has a proof with
a determined number of symbols or fewer, in some formal system.

among many others. Note that each of them has a polynomial algorithm iff P = NP.

NP-hard problems

NP-hard problems live even beyond NP, i.e. they are at least as hard as any NP-complete
problem. The precise definition here is that a problem Qis NP-hard, if there is a NP-complete
problem S, such that S is reducible to Q in polynomial time.

However, differently from NP-complete problems, a NP-hard problem is not required to be in
NP. Actually, there are problem which are NP-hard but not NP-complete. For example the
halting problem studied in the previous lecture, which asks whether a given program and input
will halt, is not inNP, even if allNP-complete problems can be reduced to it. On the other hand,
as expected, all NP-complete problems are NP-hard.

The following diagram, borrowed from the WWW, sums up our discussion:

13

4 Problems, problems, problems ...

Colouring vertices in a grph. Given a connected graph G, can its vertices be coloured using
two colours so that no edge is monochromatic?

The obvious algorithm is as follows: start with an arbitrary vertex, color it red and all of
its neighbours blue and continue. Stop when you run out of vertices or you are forced to
make an edge have both of its endpoints be the same color. This is a polynomial problem.

Reachability. Given two nodes of a finite graph decide if there is a path connecting them.

Is a variant of the reflexive-transitive closure problem. Can be solved by computing this
closure in time O(n3) and inspect the result.

A problem is a set of inputs, typically infinite, with a Boolean question to be asked of
each input. Note that a problem needs to be encoded as a language problem so that its
complexity can be analysed in a common setting. For example, the Reachability problem
can be reduced to a decision problem for the language

R = {K(G)s(i)s(j) | there is a path in G connecting nodes ni to nj}

where K and s are suitable binary encoding functions for graphs and integers.

Euler Cycle. Given a graph is there a closed path in it that uses each edge exactly once?

Note that the path can go many times through the same node (or even not at all if there
are isolated nodes). It can be proved that the necessary condition on a graph to have such
a path is that i) all nodes have equal numbers of incoming and outgoing edges, and ii) for
each pair of nodes, neither of which isolated, there is a path connecting them. So, clearly
the corresponding language

G = {K(G) | G has an Euler cycle}

where K(G) is some encoding of graphs as strings, is in P.

Hamilton Cycle. Given a graph is there a cycle that passes through each node exactly once?

No polynomial algorithm is known. Of course the trivial one (generate all paths and
choose) is not polynomial.

Equivalence of Finite Automata. Given two deterministic automata, determine whether they
recognise the same language?

The problem is polynomial, as it is the variant in which only regular expressions are con-
sidered. However, one cannot conclude about the latter just by reducing to the former:
actually, the generation of a finite automaton from a regular expression may increase ex-
ponentially the number of states.

14

Integer Partition. Given a set of n nonnegative integers represented in binary, is there a subset
S of the original set such that

∑
i∈S ai =

∑
i 6∈S ai?

The algorithm is O(nV) where V is the sum of all numbers in the original set divided by
2. In spite of its polynomial appearance, the problem is not polynomial in the length of the
input. The reason is that the integers are encoded in binary: if all integers are about 2n,
then S is close to 2n × n

2
.

Satisfiability. Is a Boolean formula in conjunctive normal form satisfiable?

No polynomial algorithm is known. However, if reduced to formulas with a maximum of
two literals, it becomes polynomial.

Optimisation problems require us to find the best among many possible solutions, according to
some cost function. The trick to transform optimisation into language problems is to fix each
input with a bound on the cost function. For example, the Traveling Salesperson problem can
be rephrased as given an integer n ≥ 2, a n × n distance matrix, and an integer b ≥ 0, find
a permutation of n such that its cost is less or equal to b (which, to build up intuition, may be
regarded as a budget).

Independent Set. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set
of vertices with |s| ≥ k such that for any two vertices in s there is no edge connecting
them? This is exactly the dinner party problem.

Clique. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set of vertices
with |s| ≥ k such that for all vertices in s there is an edge connecting each pair?

Node Cover. Given an undirected graph and an integer k ≥ 2 is there a subset s of the set of
vertices with |s| ≤ k such that s covers all edges of the graph, e.g. to minimise the number
of guards in a museum?

Note that a set of nodes covers an edge if it contains at least one endpoint of the edge.

No polynomial algorithms are known for these problems.

5 Going quantum: The BQP class

To analyse computational complexity in the context of quantum computation it is usual con-
sidering both time complexity, typically measured by the total number of gates in a quantum
circuit, and query complexity. The latter is simply the number of times a computation resorts
to an oracle. Actually, the input is specified as an oracle that computes some (Boolean valued)
function. The oracle is accessed as a black-box by supplying values and retrieving a result, but
the algorithm have no access to its internals. The task is to determine whether some property of
the function embodied in the oracle holds, by querying it the least possible number of times.

Examples of useful oracles used in typical quantum algorithms include

15

balanced function Determine whether a function is balanced or constant.

search Find the unique value k such that f(x) = 1.

periodicity Determine whether there is a least k such that f(x+ k) = f(x) for all x-

Boolean satisfability Determine whether there is an input x making f(x) = 1.

The class BQP (from bounded error quantum polynomial time)

This is the class of languages L such that there is a polynomial time quantum algorithm for
deciding membership to L, i.e. for each input size n there is a quantum circuit whose size is
bounded polynomially on n and for any input string the output answer is correct with probability
at least 2

3
. In other, equivalente words, it is the class of decision problems solvable by a quantum

computer in polynomial time, with an error probability of at most 1
3

for all instances. The error
bound, as it happens in the probabilistic case, is largely arbitrary.

The classical counterpart of BQP is the class BPP discussed above. Actually, it generalizes BPP

BPP ⊆ BQP

Furthermore, we have

P ⊆ BPP ⊆ BQP ⊆ PSPACE

which means that class of problems that can be efficiently solved by quantum computers in-
cludes all problems that can be efficiently solved by deterministic classical computers but does
not include any problems that cannot be solved by classical computers with polynomial space re-
sources. There is some evidence, but not a proof, that BQP is a strict superset of P, thus asserting
that there might be problems that are efficiently solvable by quantum computers but not so by
deterministic classical computers. For example, the discrete logarithm problem is known to be in
BQP, but most probably lies outside P. In any case, proving strictness in the chain of inclusions
above can be anticipated to be very hard, as the problem P 6= PSPACE is still to be solved.

Much is also not known about how BQP related to NP. Clearly some NP problems (namely the
discrete logarithm problem mentioned above) are in BQP, but in general it is conjectured that
NP * BQP and that, in particular, BQP and the class of NP-complete problems are disjoint.
Notice that, if that was not the case all NP problems would be in BQP (why?).

Another important conjecture indicates that some problems in BQP are as harder as NP-complete
problems. This, jointly with the observation that many BPQ problems seem to exist outside
P, supports the belief that quantum computation is indeed much more powerful that classical
computation. A formal proof of this statement is still lacking as the P 6= PSPACE remains
unsolved.

16

Further study

My preference on complexity theory is Papadimitriou’s wonderful book [6]; reference [4] pro-
vides an interesting alternative. Both S. Arora and B. Barak book [2] and Moore and Mertens
The Nature of Computation [5] are more recent textbooks covering recent achievements in com-
plexity theory (including challenges from quantum computation) and putting them in the context
of the classical results.

References

[1] S. Aaronson. Why philosophers should care about computational complexity. In B. J.
Copeland, C. Posy, and O. Shagrir, editors, Computability: Turing, Gödel, Church, and
Beyond, pages 261–328. MIT Press, 2013.

[2] S. Arora and B. Barak. Computational Complexity: A Modern Approach. Cambridge Uni-
versity Press, 2009.

[3] D. Deutsch. Quantum theory, the Church-Turing principle and the universal quantum com-
puter. Proceedings of the Royal Society of London A, 400:97–117, 1985.

[4] D. Z. Du and K. I. Ko. Theory of Computational Complexity. Addison-Wesley, 2000.

[5] C. Moore and S. Mertens. The Nature of Computation. Oxford University Press, 2011.

[6] C. H. Papadimitriou. Computational Complexity. Addison-Wesley, 1994.

17

